Table 3. Selected torsion angles $\left({ }^{\circ}\right)$ in the title compound (e.s.d.'s about 0.3°)

$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(4)-\mathrm{C}(3)$	-51.7	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{N}(2)$	141.2
$\mathrm{~S}-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(1)$	$52 \cdot 0$	$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$	171.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)$	-51.2	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	-1.5
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	58.9		
$\mathrm{~N}(1)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}$	-66.4		
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(4)$	58.5		

$0 \leq|\alpha| \leq 30^{\circ}$, inclinal when $30 \leq|\alpha| \leq 60^{\circ}$, and axial when $60 \leq|\alpha| \leq 90^{\circ}$. The polar angles α for $\mathrm{S}-\mathrm{O}(1)$, $\mathrm{C}(3)-\mathrm{C}(7)$ and $\mathrm{N}(1)-\mathrm{C}(5)$ are 94.8 (4), 68.9 (4) and $32.7(4)^{\circ}$, respectively. Therefore, the $\mathrm{S}=\mathrm{O}$ bond and the methylcarbamoyl substituent are axially oriented, whereas the acetyl group is inclinal.
$\mathrm{N}(1)$ is 0.022 (4) \AA above the plane formed by $\mathrm{C}(2)$, $\mathrm{C}(3)$ and $\mathrm{C}(5)$, showing the near-planarity of the $\mathrm{N}(1)$ amide arrangement. The moiety $\mathrm{N}(1), \mathrm{C}(5), \mathrm{C}(6), \mathrm{O}(2)$ is planar [largest deviation from the least-squares plane 0.008 (4) \AA for $C(5)]$ and is at a dihedral angle of $31.4(3)^{\circ}$ with the least-squares plane through the six-membered ring. The $s p^{2}$-hybridized $\mathrm{C}(7)$ is 0.015 (4) \AA outside the plane given by $\mathrm{C}(3), \mathrm{C}(7)$, $\mathrm{O}(3), \mathrm{N}(2)$, which plane is at a dihedral angle of $109.4(2)^{\circ}$ with respect to the ring. The vicinal substituents, acetyl and methylcarbamoyl, are nearly perpendicular with a dihedral angle of $83.8(2)^{\circ}$ between their planes. The total geometry can best be seen from Fig. 1.

Another 4-thiapipecolic acid derivative is $(3 R, 6 R)$ -3-benzyl-1,4-diaza-8-thiabicyclo[4.4.0]decane-2,5-
dione (Van Poucke \& Lenstra, 1982). It may be regarded as structurally related to the title compound if we disregard the fact that the bonds $\mathrm{N}(1)-\mathrm{C}(5)$ and $\mathrm{C}(3)-\mathrm{C}(7)$ are trans oriented in the former and cis in the latter. Indeed bond lengths and valence angles compare favourably for the majority of values (see Table 2). Notable exceptions are the shorter $\mathrm{C}-\mathrm{S}$ lengths in the title compound, which is normal since they are here adjacent to $\mathrm{S}=\mathrm{O}$. Also the bonds $\mathrm{N}(1)-\mathrm{C}(5)$ and $\mathrm{N}(2)-\mathrm{C}(7)$ are shorter, indicating that they have more amide character than in the bicyclic counterpart. The steric crowding in the title compound forces the angles at $\mathrm{C}(3)$ to be relatively large. For the same reason the least-puckered side of the sixmembered ring is found at $C(3)$ and $C(4)$ and the most puckered side at $\mathrm{C}(1)$ and $\mathrm{C}(2)$.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. Van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.

Lipson, H. \& Cochran, W. (1968). The Determination of Crystal Structures, pp. 301 ff . London: Bell.
Norrestam, R. (1981). Acta Cryst. A37, 764-765.
Petit, G. H., Dillen, J. \& Geise, H. J. (1983). Acta Cryst. B39, 648-651.
Van der Auwera, C. \& Anteunis, M. J. (1984). Unpublished results.
Van Poucke, M. \& Lenstra, A. T. H. (1982). Cryst. Struct. Commun. 11, 853-859.

Acta Cryst. (1984). C40, 1626-1628

Structure of Trimethyl 8,13-Diphenyl-13-azatricyclo[8.2.1. $0^{2,7}$]-trideca-2(7),3,5,11-tetraene-10,11,12-tricarboxylate, $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{6}$

By René Mercier

Laboratoire d'Electrochimie des Solides, ERA 810, Université de Franche-Comté, 25030 Besançon CEDEX, France

Joël Vebrel
Laboratoire de Chimie Appliquée, Université de Franche-Comté, 25030 Besançon CEDEX, France
and Martin Schmidt and George M. Sheldrick
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany
(Received 21 December 1983; accepted 4 June 1984)

Abstract. $\quad M_{r}=497.55$, monoclinic, $P 2_{1} / c, \quad a=$ 15.074 (3),$\quad b=9.839$ (1),$\quad c=18.545$ (3) $\AA, \quad \beta=$ $104.39(2)^{\circ}, V=2664 \AA^{3}, Z=4, D_{x}=1.24 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=0.7 \mathrm{~mm}^{-1}, F(000)=1048$,
$T=293 \mathrm{~K}$, final $R=0.076$ for 2070 independent observed reflections. The dipolar cycloaddition of dimethyl acetylenedicarboxylate to the aziridine ring leads to only one diastereoisomeric pyrroline. Its © 1984 International Union of Crystallography
structure indicates a stereospecific approach. The benzocondensed heptaatomic ring has an envelope conformation ($\mathrm{N}-\mathrm{C}: 1.446$ and $1.482 \AA$). The $\mathrm{N}-$ phenyl bond is shorter ($\mathrm{N}-\mathrm{C}: 1.392 \AA$). The pyrrolinic ring ($\mathrm{C}=\mathrm{C}: 1 \cdot 317 \AA$) lies in an axial configuration at the opposite side of the N-phenyl group with respect to the mean plane of the molecule.

Introduction. In a previous study (Vebrel, Cerutti \& Carrie, 1979), we described a novel route to tricyclic aziridines (I) by reaction with monosubstituted condensed benzocyclohexane derivatives, illustrating the importance of steric and conformational factors in dipolar 1,3 -cycloaddition. These reactions lead to only one type of aziridine (I), the stereochemistry of which has been determined elsewhere (Tinant, Declercq, Germain \& Van Meerssche, 1982) for the methyl derivative. The R group always lies in an equatorial position relative to the mean plane of the benzo nucleus, and the N atom is on the same side of this plane as the axial H atom. The addition of dimethyl acetylenedicarboxylate yields only one diastereoisomer, which could possess either structure (II) or structure (II' $^{\prime}$). Contrary to what had been expected, the aziridine ring is thermally broken between the two C atoms, violating the Woodward-Hoffmann rules. The structure of the product has been determined to discover whether it corresponds to (II) or (II'), thereby establishing the stereochemistry of the reaction.

Experimental. Crystal (ca $0.3 \times 0.2 \times 0.2 \mathrm{~mm}$) grown from ethanol; CAD-4 Nonius diffractometer; unit-cell parameters refined from 2θ angles for 25 independent reflections measured with $\omega-2 \theta$ scanning; $0 \leq 2 \theta \leq 120^{\circ}, 0 \leq h \leq 16,0 \leq k \leq 11,-20 \leq l \leq 20$, 2070 unique reflections $[F>5 \sigma(F)] ; R_{\text {int }}=0.048$. Standard reflection $\overline{4} 0 \overline{2}$, maximal shift of $4 \cdot 2 \%$ around mean intensity value (83 measurements). Lorentz and polarization corrections, absorption ignored. Direct methods, refinement on F values; anisotropic thermal parameters for all non- H atoms; ligand H atoms in idealized positions treated as 'riding atoms' or 'rigid groups' for CH_{2} and $\mathrm{CH}_{3}(\mathrm{C}-\mathrm{H}=1.08 \AA)$. Final iterations on x, y, z of all atoms: $R=0.076, w R$ $=0.078$ with $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0145 F_{o}{ }^{2}\right], 343$ parameters, slope of normal probability plot $=1 \cdot 12$, max. shift/e.s.d. $=1 \cdot 16, \quad-0.42 \leq \Delta \rho \leq 0.92 \mathrm{e} \AA^{-3} ; \quad$ scattering factors of neutral $\mathrm{C}, \mathrm{O}, \mathrm{N}$, and H atoms taken from Cromer \& Mann (1968), anomalous-dispersion terms included (Cromer \& Liberman, 1970). All calculations performed with programs written by Sheldrick (1976, 1981).

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{4}\right)$

$U_{\mathrm{eq}}=\frac{1}{3}\left(\mathrm{trace}\right.$ of the orthogonalized $U_{i j}$ matrix $)$.				
	x	y	z	$U_{\text {eq }}$
C(1)	2516 (4)	2267 (6)	3784 (3)	459 (4)
C(2)	3442 (4)	2356 (6)	4189 (3)	475 (4)
C(3)	4057 (4)	1372 (6)	4082 (3)	544 (5)
C(4)	3819 (5)	308 (7)	3594 (4)	616 (5)
C(5)	2905 (5)	237 (7)	3178 (4)	635 (5)
C(6)	2288 (5)	1184 (7)	3285 (3)	566 (5)
C(7)	1754 (4)	3203 (6)	3913 (3)	501 (4)
C(8)	1914 (4)	4750 (6)	3943 (3)	480 (4)
C(9)	2733 (4)	5239 (6)	4576 (3)	437 (3)
C(10)	3815 (4)	3455 (6)	4761 (3)	447 (4)
C(11)	828 (5)	2987 (8)	3348 (5)	666 (5)
C(12)	656 (6)	3530 (10)	2645 (5)	927 (7)
C(13)	-200 (9)	3387 (13)	2155 (6)	1162 (8)
C(14)	-849 (9)	2678 (14)	2367 (9)	1279 (9)
C(15)	-744 (8)	2149 (14)	3039 (9)	1339 (9)
C(16)	166 (6)	2304 (10)	3574 (6)	1065 (7)
C(17)	3939 (4)	5295 (6)	3865 (3)	459 (4)
C(18)	3535 (5)	6355 (6)	3405 (4)	556 (5)
C(19)	3897 (5)	6810 (7)	2821 (4)	632 (6)
C(20)	4665 (6)	6232 (8)	2697 (4)	714 (6)
C(21)	5096 (5)	5182 (7)	3161 (4)	644 (5)
C(22)	4743 (4)	4720 (7)	3737 (3)	534 (5)
C(23)	2736 (4)	4462 (6)	5294 (3)	424 (4)
C(24)	3334 (4)	3462 (6)	5380 (3)	445 (4)
C(25)	2103 (5)	4830 (7)	5764 (3)	550 (4)
C(26)	3532 (5)	2379 (7)	5953 (3)	533 (5)
C(27)	677 (7)	4354 (12)	6034 (6)	1111(8)
C(28)	3169 (7)	1553 (9)	7046 (4)	925 (7)
C(29)	2632 (5)	6743 (7)	4729 (3)	539 (4)
C(30)	3314 (7)	8698 (8)	5355 (6)	969 (6)
O(1)	2280 (4)	5692 (6)	6237 (3)	931 (6)
$\mathrm{O}(2)$	4060 (4)	1473 (5)	5969 (2)	692 (4)
$\mathrm{O}(3)$	1340 (3)	4113 (5)	5591 (2)	723 (5)
$\mathrm{O}(4)$	3032 (3)	2562 (5)	6451 (2)	696 (5)
$\mathrm{O}(5)$	1924 (4)	7351 (5)	4559 (3)	763 (5)
$\mathrm{O}(6)$	3402 (3)	7295 (4)	5102 (3)	706 (5)
N	3616 (3)	4852 (5)	4466 (3)	448 (3)

Table 2. Bond lengths (\AA) and torsion and dihedral angles $\left(^{\circ}\right.$)

$\begin{array}{lll}\text { Mean plane (1) } & \mid C(1) \text { to } C(6) \mid & \text { planar to within } 0.009 \AA \\ \text { Mean plane (2) } & \mid C(11) \text { to } C(16) \mid & \text { planar to within } 0.009 \AA\end{array}$
Mean plane (3) $\mid \mathrm{C}(17)$ to $\mathrm{C}(22) \mid$ planar to within $0.012 \AA$
(I)-(2) 85.7 (3)
(1)-(3) $84 \cdot 3(3)$
(2)-(3) $52 \cdot 8$ (3)

Discussion. Atomic parameters are given in Table 1.* Bond lengths (Table 2) and angles reveal no unusual features.

The benzo (ring 1) and phenyl groups (rings 2 and 3) are close to planar with mean $\mathrm{C}-\mathrm{C}=1.39 \AA$. Rings (1) and (2) in peri interaction adopt an orthogonal conformation [dihedral angle: $85.7(3)^{\circ}$], the $\mathrm{C}(7)-$ ring (2) bond being purely equatorial $\left[1.2(3)^{\circ}\right.$, relative to mean plane 1 (see Table 2)]. The N atom displays three different $\mathrm{N}-\mathrm{C}$ bonds, the shortest $\mathrm{N}-\mathrm{C}(17)$ [1.392 (7) \AA] joining the N-phenyl group to the heptaatomic ring (Fig. 1); this large ring has an envelope conformation, the point of it being the N atom ($1.07 \AA$ from the mean plane 1); $\mathrm{C}(8)$ and $\mathrm{C}(3)$ lie closer to the plane (0.76 and $0.60 \AA$). The ethylene adduct $[C(23)=C(24): 1.317(8) \AA$] lies in axial configuration with respect to the benzo ring (1) (Fig. 1) and on the other side of this plane. The relative disposition of $H(7)$ and N is thus inverted with respect to the original aziridine (I). The structure clearly corresponds to the diastereoisomer (II^{\prime}).

This structure determination indicates that the acetylene approaches the aziridine ring (I) from the side in which the H atom is directed and that after the triangular ring opens, the N atom is displaced to the opposite side of the ring.

[^0]

Fig. 1. Thermal-ellipsoid plot (50% probability) of pyrroline molecule (II^{\prime}), showing the atom-numbering scheme.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phis. 53(5), 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cry'st. A24, 321-324.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1981). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen.
Tinant, B., Declerce, J.-P., Germain, G. \& Van Meerssche, M. (1982). Crist. Struct. Commun. 11(4), 1411-1416.

Vebrel, J., Cerutti, E. \& Carrie, R. (1979). C. R. Acad. Sci. Sér. C, 288, 351-354.

Acta Cryst. (1984). C40, 1628-1630

trans-Cinnamoyl Peroxide, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$

By Donald Bethell, Derek J. Chadwick and Guy Q. Maling
 Department of Organic Chemistry, University of Liverpool, Liverpool L69 3BX, England

and Marjorie M. Harding
Department of Inorganic, Physical and Industrial Chemistry, University of Liverpool, Liverpool L69 3BX, England

(Received 23 February 1984; accepted 5 June 1984)

ca 293 K . Final $R=0.069$ for 604 unique reflexions. In the crystal the molecule takes up an extended conformation, its two acyloxy groups lying in approximately orthogonal planes. The α, β-unsaturated carbonyl
© 1984 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39503 (12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

